Extensions 1→N→G→Q→1 with N=C52 and Q=C22

Direct product G=N×Q with N=C52 and Q=C22
dρLabelID
C22×C52208C2^2xC52208,45

Semidirect products G=N:Q with N=C52 and Q=C22
extensionφ:Q→Aut NdρLabelID
C52⋊C22 = D4×D13φ: C22/C1C22 ⊆ Aut C52524+C52:C2^2208,39
C522C22 = C2×D52φ: C22/C2C2 ⊆ Aut C52104C52:2C2^2208,37
C523C22 = C2×C4×D13φ: C22/C2C2 ⊆ Aut C52104C52:3C2^2208,36
C524C22 = D4×C26φ: C22/C2C2 ⊆ Aut C52104C52:4C2^2208,46

Non-split extensions G=N.Q with N=C52 and Q=C22
extensionφ:Q→Aut NdρLabelID
C52.1C22 = D4⋊D13φ: C22/C1C22 ⊆ Aut C521044+C52.1C2^2208,15
C52.2C22 = D4.D13φ: C22/C1C22 ⊆ Aut C521044-C52.2C2^2208,16
C52.3C22 = Q8⋊D13φ: C22/C1C22 ⊆ Aut C521044+C52.3C2^2208,17
C52.4C22 = C13⋊Q16φ: C22/C1C22 ⊆ Aut C522084-C52.4C2^2208,18
C52.5C22 = D42D13φ: C22/C1C22 ⊆ Aut C521044-C52.5C2^2208,40
C52.6C22 = Q8×D13φ: C22/C1C22 ⊆ Aut C521044-C52.6C2^2208,41
C52.7C22 = D52⋊C2φ: C22/C1C22 ⊆ Aut C521044+C52.7C2^2208,42
C52.8C22 = C104⋊C2φ: C22/C2C2 ⊆ Aut C521042C52.8C2^2208,6
C52.9C22 = D104φ: C22/C2C2 ⊆ Aut C521042+C52.9C2^2208,7
C52.10C22 = Dic52φ: C22/C2C2 ⊆ Aut C522082-C52.10C2^2208,8
C52.11C22 = C2×Dic26φ: C22/C2C2 ⊆ Aut C52208C52.11C2^2208,35
C52.12C22 = C8×D13φ: C22/C2C2 ⊆ Aut C521042C52.12C2^2208,4
C52.13C22 = C8⋊D13φ: C22/C2C2 ⊆ Aut C521042C52.13C2^2208,5
C52.14C22 = C2×C132C8φ: C22/C2C2 ⊆ Aut C52208C52.14C2^2208,9
C52.15C22 = C52.4C4φ: C22/C2C2 ⊆ Aut C521042C52.15C2^2208,10
C52.16C22 = D525C2φ: C22/C2C2 ⊆ Aut C521042C52.16C2^2208,38
C52.17C22 = C13×D8φ: C22/C2C2 ⊆ Aut C521042C52.17C2^2208,25
C52.18C22 = C13×SD16φ: C22/C2C2 ⊆ Aut C521042C52.18C2^2208,26
C52.19C22 = C13×Q16φ: C22/C2C2 ⊆ Aut C522082C52.19C2^2208,27
C52.20C22 = Q8×C26φ: C22/C2C2 ⊆ Aut C52208C52.20C2^2208,47
C52.21C22 = C13×C4○D4φ: C22/C2C2 ⊆ Aut C521042C52.21C2^2208,48
C52.22C22 = C13×M4(2)central extension (φ=1)1042C52.22C2^2208,24

׿
×
𝔽